Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38030558

RESUMO

BACKGROUND: Bone loss after kidney transplantation is highly variable. We investigated whether changes in bone turnover markers associate with bone loss during the first post-transplant year. METHODS: Bone mineral density (BMD) was measured at 0 and 12 months, with biointact parathyroid hormone, bone-specific alkaline phosphatase (BALP), intact procollagen type I N -terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) measured at 0, 3, and 12 months post-transplant ( N =209). Paired transiliac bone biopsies were available in a subset ( n =49). Between-group differences were evaluated by Student's t test, Wilcoxon signed-rank test, or Pearson's chi-squared test. RESULTS: Changes in BMD varied from -22% to +17%/yr. Compared with patients with no change (±2.5%/yr), patients who gained BMD had higher levels of parathyroid hormone (236 versus 136 pg/ml), BALP (31.7 versus 18.8 µ g/L), and Intact PINP (121.9 versus 70.4 µ g/L) at time of transplantation; a greater decrease in BALP (-40% versus -21%) and Intact PINP (-43% versus -13%) by 3 months; and lower levels of Intact PINP (36.3 versus 60.0 µ g/L) at 12 months post-transplant. Patients who lost BMD had a less marked decrease, or even increase, in Intact PINP (+22% versus -13%) and TRAP5b (-27% versus -43%) at 3 months and higher Intact PINP (83.7 versus 60.0 µ g/L) and TRAP5b (3.89 versus 3.16 U/L) at 12 months compared with patients with no change. If none of the biomarkers decreased by the least significant change at 3 months, an almost two-fold (69% versus 36%) higher occurrence of bone loss was seen at 12 months post-transplant. CONCLUSIONS: Bone loss after kidney transplantation was highly variable. Resolution of high bone turnover, as reflected by decreasing bone turnover markers, associated with BMD gain, while increasing bone turnover markers associated with bone loss.

2.
Sci Rep ; 13(1): 18119, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872220

RESUMO

CINAC-patients present renal proximal tubular cell lysosomal lesions which are also observed in patients experiencing calcineurin inhibitor (CNI) nephrotoxicity, suggesting that CINAC is a toxin-induced nephropathy. An alternative hypothesis advocates chronic dehydration as a major etiological factor for CINAC. Here, we evaluated histological and molecular changes in dehydrated versus toxin exposed rats. Wistar rats were divided in 3 groups. Group 1 (n = 6) had free access to drinking water (control group). Group 2 (n = 8) was water deprived for 10 h per 24 h, 5 days/week and placed in an incubator (37 °C) for 30 min/h during water deprivation. Group 3 (n = 8) underwent daily oral gavage with cyclosporine (40 mg/kg body weight). After 28 days, renal function, histopathology and proteomic signatures were analysed. Cyclosporine-treated rats developed focal regions of atrophic proximal tubules with associated tubulo-interstitial fibrosis. PASM staining revealed enlarged argyrophilic granules in affected proximal tubules, identified as lysosomes by immunofluorescent staining. Electron microscopy confirmed the enlarged and dysmorphic phenotype of the lysosomes. Overall, these kidney lesions resemble those that have been previously documented in farmers with CINAC. Dehydration resulted in none of the above histopathological features. Proteomic analysis revealed that dehydration and cyclosporine both induce injury pathways, yet of a clear distinct nature with a signature of toxicity only for the cyclosporine group. In conclusion, both cyclosporine and dehydration are injurious to the kidney. However, dehydration alone does not result in kidney histopathology as observed in CINAC patients, whereas cyclosporine administration does. The histopathological analogy between CINAC and calcineurin inhibitor nephrotoxicity in rats and humans supports the involvement of an as-yet-unidentified environmental toxin in CINAC etiology.


Assuntos
Nefrite Intersticial , Insuficiência Renal , Humanos , Ratos , Animais , Desidratação/metabolismo , Inibidores de Calcineurina , Proteômica , Ratos Wistar , Nefrite Intersticial/patologia , Rim/metabolismo , Ciclosporina/farmacologia , Insuficiência Renal/patologia , Imunossupressores/farmacologia
3.
Front Pediatr ; 11: 1147207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404560

RESUMO

Introduction: The present study aimed at investigating the readability of online sources on hereditary hearing impairment (HHI). Methods: In August 2022, the search terms "hereditary hearing impairment", "genetic deafness", hereditary hearing loss", and "sensorineural hearing loss of genetic origin" were entered into the Google search engine and educational materials were determined. The first 50 websites were determined for each search. The double hits were removed and websites with only graphics or tables were excluded. Websites were categorized into either a professional society, a clinical practice or a general health information website. The readability tests to evaluate the websites included: Flesch Reading Ease, Flesch-Kincaid grade level, Gunning-Fog Index, Simple Measure of Gobbledygook, Coleman-Liau Index, Automated Readability Index. Results: Twentynine websites were included and categorized as from 4 professional societies, 11 from clinical practices and 14 providing general information. All analyzed websites required higher reading levels than sixth grade. On average 12-16 years of education is required to read and understand the websites focused on HHI. Although general health information websites have better readability, the difference was not statistically significant. Discussion: The readability scores of every type of online educational materials on HHI are above the recommended level indicating that not all patients and parents can comprehend the information they seek for on these websites.

4.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240387

RESUMO

Diabetic Kidney Disease (DKD) is a major microvascular complication for diabetic patients and is the most common cause of chronic kidney disease (CKD) and end-stage renal disease. Antidiabetic drugs, such as metformin and canagliflozin, have been shown to exert renoprotective effects. Additionally, quercetin recently showed promising results for the treatment of DKD. However, the molecular pathways through which these drugs exert their renoprotective effects remain partly unknown. The current study compares the renoprotective potential of metformin, canagliflozin, metformin + canagliflozin, and quercetin in a preclinical rat model of DKD. By combining streptozotocin (STZ) and nicotinamide (NAD) with daily oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration, DKD was induced in male Wistar Rats. After two weeks, rats were assigned to five treatment groups, receiving vehicle, metformin, canagliflozin, metformin + canagliflozin, or quercetin for a period of 12 weeks by daily oral gavage. Non-diabetic vehicle-treated control rats were also included in this study. All rats in which diabetes was induced developed hyperglycemia, hyperfiltration, proteinuria, hypertension, renal tubular injury and interstitial fibrosis, confirming DKD. Metformin and canagliflozin, alone or together, exerted similar renoprotective actions and similar reductions in tubular injury and collagen accumulation. Renoprotective actions of canagliflozin correlated with reduced hyperglycemia, while metformin was able to exert these effects even in the absence of proper glycemic control. Gene expression revealed that the renoprotective pathways may be traced back to the NF-κB pathway. No protective effect was seen with quercetin. In this experimental model of DKD, metformin and canagliflozin were able to protect the kidney against DKD progression, albeit in a non-synergistic way. These renoprotective effects may be attributable to the inhibition of the NF-κB pathway.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hiperglicemia , Metformina , Masculino , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , NF-kappa B/metabolismo , Quercetina/farmacologia , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Rim/metabolismo , Hiperglicemia/metabolismo
5.
Clin Kidney J ; 16(3): 456-472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36865010

RESUMO

The coexistence of osteoporosis and chronic kidney disease (CKD) is an evolving healthcare challenge in the face of increasingly aging populations. Globally, accelerating fracture incidence causes disability, impaired quality of life and increased mortality. Consequently, several novel diagnostic and therapeutic tools have been introduced for treatment and prevention of fragility fractures. Despite an especially high fracture risk in CKD, these patients are commonly excluded from interventional trials and clinical guidelines. While management of fracture risk in CKD has been discussed in recent opinion-based reviews and consensus papers in the nephrology literature, many patients with CKD stages 3-5D and osteoporosis are still underdiagnosed and untreated. The current review addresses this potential treatment nihilism by discussing established and novel approaches to diagnosis and prevention of fracture risk in patients with CKD stages 3-5D. Skeletal disorders are common in CKD. A wide variety of underlying pathophysiological processes have been identified, including premature aging, chronic wasting, and disturbances in vitamin D and mineral metabolism, which may impact bone fragility beyond established osteoporosis. We discuss current and emerging concepts of CKD-mineral and bone disorders (CKD-MBD) and integrate management of osteoporosis in CKD with current recommendations for management of CKD-MBD. While many diagnostic and therapeutic approaches to osteoporosis can be applied to patients with CKD, some limitations and caveats need to be considered. Consequently, clinical trials are needed that specifically study fracture prevention strategies in patients with CKD stages 3-5D.

6.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835062

RESUMO

Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model. Employing a high-dimensionality unbiased proteomic approach, we also investigated the molecular signaling events associated with blocking arterial calcification through SBI-425 dosing. The remedial actions of SBI-425 were strongly associated with (i) a significant downregulation of inflammatory (acute phase response signaling) and steroid/glucose nuclear receptor signaling (LXR/RXR signaling) pathways and (ii) an upregulation of mitochondrial metabolic pathways (TCA cycle II and Fatty Acid ß-oxidation I). Interestingly, we previously demonstrated that uremic toxin-induced arterial calcification contributes to the activation of the acute phase response signaling pathway. Therefore, both studies suggest a strong link between acute phase response signaling and arterial calcification across different conditions. The identification of therapeutic targets in these molecular signaling pathways may pave the way to novel therapies against the development of arterial media calcification.


Assuntos
Calcinose , Calcificação Vascular , Ratos , Animais , Varfarina , Reação de Fase Aguda , Proteômica , Fosfatase Alcalina/metabolismo , Calcinose/metabolismo , Calcificação Vascular/patologia
7.
Nutrients ; 15(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771305

RESUMO

Renal osteodystrophy (ROD) is a complex and serious complication of chronic kidney disease (CKD), a major global health problem caused by loss of renal function. Currently, the gold standard to accurately diagnose ROD is based on quantitative histomorphometric analysis of trabecular bone. Although this analysis encompasses the evaluation of osteoblast and osteoclast number/activity, tfigurehe interest in osteocytes remains almost nihil. Nevertheless, this cell type is evidenced to perform a key role in bone turnover, particularly through its production of various bone proteins, such as sclerostin. In this study, we aim to investigate, in the context of ROD, to which extent an association exists between bone turnover and the abundance of osteocytes and osteocytic sclerostin expression in both the trabecular and cortical bone compartments. Additionally, the effect of parathyroid hormone (PTH) on bone sclerostin expression was examined in parathyroidectomized rats. Our results indicate that PTH exerts a direct inhibitory function on sclerostin, which in turn negatively affects bone turnover and mineralization. Moreover, this study emphasizes the functional differences between cortical and trabecular bone, as the number of (sclerostin-positive) osteocytes is dependent on the respective bone compartment. Finally, we evaluated the potential of sclerostin as a marker for CKD and found that the diagnostic performance of circulating sclerostin is limited and that changes in skeletal sclerostin expression occur more rapidly and more pronounced. The inclusion of osteocytic sclerostin expression and cortical bone analysis could be relevant when performing bone histomorphometric analysis for diagnostic purposes and to unravel pathological mechanisms of bone disease.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Ratos , Animais , Osteócitos/metabolismo , Osso e Ossos/metabolismo , Remodelação Óssea , Hormônio Paratireóideo/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações
9.
Nephrol Dial Transplant ; 38(5): 1127-1138, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36316014

RESUMO

BACKGROUND: Cardiovascular disease remains the leading cause of death in chronic kidney disease (CKD) patients, especially in those undergoing dialysis and kidney transplant surgery. CKD patients are at high risk of developing arterial media calcifications (AMC) and arterial stiffness. We hypothesized that investigation of disease progression at an early stage could provide novel insights in understanding AMC etiology. METHODS: An adenine diet was administered to male Wistar rats to induce AMC. Rats were sacrificed after 2, 4 and 8 weeks. AMC was measured by assessment of aortic calcium and visualized using histology. Arterial stiffness was measured in vivo by ultrasound and ex vivo by applying cyclic stretch of physiological magnitude on isolated arterial segments, allowing us to generate the corresponding pressure-diameter loops. Further, ex vivo arterial reactivity was assessed in organ baths at 2 and 4 weeks to investigate early alterations in biomechanics/cellular functionality. RESULTS: CKD rats showed a time-dependent increase in aortic calcium which was confirmed on histology. Accordingly, ex vivo arterial stiffness progressively worsened. Pressure-diameter loops showed a gradual loss of arterial compliance in CKD rats. Additionally, viscoelastic properties of isolated arterial segments were altered in CKD rats. Furthermore, after 2 and 4 weeks of adenine treatment, a progressive loss in basal, nitric oxide (NO) levels was observed, which was linked to an increased vessel tonus and translates into an increasing viscous modulus. CONCLUSIONS: Our observations indicate that AMC-related vascular alterations develop early after CKD induction prior to media calcifications being present. Preventive action, related to restoration of NO bioavailability, might combat AMC development.


Assuntos
Arteriosclerose , Calcinose , Insuficiência Renal Crônica , Calcificação Vascular , Rigidez Vascular , Masculino , Ratos , Animais , Cálcio , Ratos Wistar , Diálise Renal , Insuficiência Renal Crônica/complicações , Rigidez Vascular/fisiologia , Progressão da Doença , Adenina , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle
10.
FASEB J ; 37(1): e22701, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520031

RESUMO

Calcification of the medial layer, inducing arterial stiffness, contributes significantly to cardiovascular mortality in patients with chronic kidney disease (CKD). Extracellular nucleotides block the mineralization of arteries by binding to purinergic receptors including the P2Y2 receptor. This study investigates whether deletion of the P2Y2 receptor influences the development of arterial media calcification in CKD mice. Animals were divided into: (i) wild type mice with normal renal function (control diet) (n = 8), (ii) P2Y2 R-/- mice with normal renal function (n = 8), (iii) wild type mice with CKD (n = 27), and (iv) P2Y2 R-/- mice with CKD (n = 22). To induce CKD, animals received an alternating (0.2-0.3%) adenine diet for 7 weeks. All CKD groups developed a similar degree of chronic renal failure as reflected by high serum creatinine and phosphorus levels. Also, the presence of CKD induced calcification in the heart and medial layer of the aortic wall. However, deletion of the P2Y2 receptor makes CKD mice more susceptible to the development of calcification in the heart and aorta (aortic calcium scores (median ± IQR), CKD-wild type: 0.34 ± 4.3 mg calcium/g wet tissue and CKD-P2Y2 R-/- : 4.0 ± 13.2 mg calcium/g wet tissue). As indicated by serum and aortic mRNA markers, this P2Y2 R-/- mediated increase in CKD-related arterial media calcification was associated with an elevation of calcification stimulators, including alkaline phosphatase and inflammatory molecules interleukin-6 and lipocalin 2. The P2Y2 receptor should be considered as an interesting therapeutic target for tackling CKD-related arterial media calcification.


Assuntos
Fosfatase Alcalina , Lipocalina-2 , Insuficiência Renal Crônica , Túnica Íntima , Calcificação Vascular , Animais , Camundongos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Regulação para Cima , Calcificação Vascular/etiologia , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
11.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887143

RESUMO

Serum calcium isotopes (δ44/42Ca) have been suggested as a non-invasive and sensitive Ca balance marker. Quantitative δ44/42Ca changes associated with Ca flux across body compartment barriers relative to the dietary Ca and the correlation of δ44/42CaSerum with bone histology are unknown. We analyzed Ca and δ44/42Ca by mass-spectrometry in rats after two weeks of standard-Ca-diet (0.5%) and after four subsequent weeks of standard- and of low-Ca-diet (0.25%). In animals on a low-Ca-diet net Ca gain was 61 ± 3% and femur Ca content 68 ± 41% of standard-Ca-diet, bone mineralized area per section area was 68 ± 15% compared to standard-Ca-diet. δ44/42Ca was similar in the diets, and decreased in feces and urine and increased in serum in animals on low-Ca-diet. δ44/42CaBone was higher in animals on low-Ca-diet, lower in the diaphysis than the metaphysis and epiphysis, and unaffected by gender. Independent of diet, δ44/42CaBone was similar in the femora and ribs. At the time of sacrifice, δ44/42CaSerum inversely correlated with intestinal Ca uptake and histological bone mineralization markers, but not with Ca content and bone mineral density by µCT. In conclusion, δ44/42CaBone was bone site specific, but mechanical stress and gender independent. Low-Ca-diet induced marked changes in feces, serum and urine δ44/42Ca in growing rats. δ44/42CaSerum inversely correlated with markers of bone mineralization.


Assuntos
Calcificação Fisiológica , Cálcio , Animais , Densidade Óssea , Cálcio/análise , Isótopos de Cálcio , Cálcio da Dieta , Dieta , Ratos
13.
Metabolites ; 12(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35448514

RESUMO

The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.

14.
FASEB J ; 36(5): e22315, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429059

RESUMO

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg-1 · d-1 ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.


Assuntos
Calcinose , Calcificação Vascular , Doenças Vasculares , Animais , Cálcio , Progressão da Doença , Células Endoteliais , Masculino , NG-Nitroarginina Metil Éster , Ratos , Túnica Média , Calcificação Vascular/induzido quimicamente , Varfarina/toxicidade
15.
Kidney Int ; 101(5): 929-944, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271933

RESUMO

Current treatment strategies for chronic kidney disease (CKD) mainly focus on controlling risk factors. Metformin, a first-line drug for type 2 diabetes, exerts beneficial pleiotropic actions beyond its prescribed use and incipient data have revealed protective effects against the development of kidney impairment. This study evaluated the therapeutic efficacy of metformin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor recently approved by the United States Food and Drug Administration to treat diabetic nephropathy, in slowing the progression of established non-diabetic CKD. Rats with adenine-induced CKD were assigned to different treatment groups to receive either 200 mg/kg metformin, four or five weeks after the start of the adenine diet (established mild-moderate CKD), or 25 mg/kg canagliflozin four weeks after the start of the diet, by daily oral gavage administered during four weeks. Each treatment group was compared to a vehicle group. Chronic adenine dosing resulted in severe CKD in vehicle-treated rats as indicated by a marked rise in serum creatinine levels, a marked decrease in creatinine clearance, and a disturbed mineral metabolism. Metformin, but not canagliflozin, halted functional kidney decline. Additionally, kidneys of metformin-treated animals showed less interstitial area and inflammation as compared to the vehicle group. Proteomic analyses revealed that metformin's kidney-protective effect was associated with the activation of the Hippo signaling pathway, a highly conserved multiprotein kinase cascade that controls tissue development, organ size, cell proliferation, and apoptosis. Thus, metformin demonstrated therapeutic efficacy by halting the progression of established CKD in a rat model.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Metformina , Insuficiência Renal Crônica , Adenina/efeitos adversos , Animais , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Humanos , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Proteômica , Ratos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
16.
Bone Rep ; 16: 101172, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35198658

RESUMO

Bone microarchitecture is an important component of bone quality and disturbances may reduce bone strength and resistance to trauma. Kidney transplant recipients have an excess risk of fractures, and bone loss affecting both trabecular and cortical bone compartments have been demonstrated after kidney transplantation. The primary aim of this study was to investigate the impact of kidney transplantation on trabecular and cortical bone microarchitecture, assessed by histomorphometry and micro computed tomography (µCT). Iliac crest bone biopsies, analyzed by bone histomorphometry and µCT, were performed at time of kidney transplantation and 12 months post-transplantation in an unselected cohort of 30 patients. Biochemical markers of mineral metabolism and bone turnover were measured at both time-points. At 12 months post-transplantation, bone turnover was low in 5 (17%) and normal in 25 (83%) patients. By histomorphometry, bone remodeling normalized, with decreases in eroded perimeters (4.0 to 2.1%, p = 0.02) and number of patients with marrow fibrosis (41 to 0%, p < 0.001). By µCT, trabecular thickness (134 to 125 µM, p = 0.003) decreased slightly. Other parameters of bone volume and microarchitecture, including cortical thickness (729 to 713 µm, p = 0.73) and porosity (10.2 to 9.5%, p = 0.15), remained stable. We conclude that kidney transplantation with current immunosuppressive protocols has a limited impact on bone microarchitecture.

17.
J Am Soc Nephrol ; 33(3): 638-652, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35046132

RESUMO

BACKGROUND: Knowledge of the effect of kidney transplantation on bone is limited and fragmentary. The aim of this study was to characterize the evolution of bone disease in the first post-transplant year. METHODS: We performed a prospective, observational cohort study in patients referred for kidney transplantation under a steroid-sparing immunosuppressive protocol. Bone phenotyping was done before, or at the time of, kidney transplantation, and repeated at 12 months post-transplant. The phenotyping included bone histomorphometry, bone densitometry by dual-energy x-ray absorptiometry, and biochemical parameters of bone and mineral metabolism. RESULTS: Paired data were obtained for 97 patients (median age 55 years; 72% male; 21% of patients had diabetes). Bone turnover remained normal or improved in the majority of patients (65%). Bone histomorphometry revealed decreases in bone resorption (eroded perimeter, mean 4.6% pre- to 2.3% post-transplant; P<0.001) and disordered bone formation (fibrosis, 27% pre- versus 2% post-transplant; P<0.001). Whereas bone mineralization was normal in all but one patient pretransplant, delayed mineralization was seen in 15% of patients at 1 year post-transplant. Hypophosphatemia was associated with deterioration in histomorphometric parameters of bone mineralization. Changes in bone mineral density were highly variable, ranging from -18% to +17% per year. Cumulative steroid dose was related to bone loss at the hip, whereas resolution of hyperparathyroidism was related to bone gain at both spine and hip. CONCLUSIONS: Changes in bone turnover, mineralization, and volume post-transplant are related both to steroid exposure and ongoing disturbances of mineral metabolism. Optimal control of mineral metabolism may be key to improving bone quality in kidney transplant recipients. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Evolution of Bone Histomorphometry and Vascular Calcification Before and After Renal Transplantation, NCT01886950.


Assuntos
Doenças Ósseas , Transplante de Rim , Densidade Óssea , Feminino , Humanos , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Minerais , Estudos Prospectivos , Esteroides
18.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038187

RESUMO

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenina/efeitos adversos , Idoso , Animais , Cálcio , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Varfarina/efeitos adversos , beta Catenina
19.
Am J Kidney Dis ; 79(5): 667-676.e1, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710517

RESUMO

RATIONALE & OBJECTIVE: Bone biopsy remains the gold standard for diagnosing renal osteodystrophy as comparable noninvasive alternatives have yet to be established. This study investigated the diagnostic accuracy of biochemical markers of skeletal remodeling to predict bone turnover. STUDY DESIGN: Cross-sectional retrospective diagnostic test study. SETTING & PARTICIPANTS: Patients with chronic kidney disease glomerular filtration rate categories 4-5, including patients treated with dialysis (G4-G5D) and kidney transplant recipients with successful transiliac bone biopsies. TESTS COMPARED: Bone turnover as determined by bone histomorphometry was compared with the following biochemical markers: full-length (amino acids 1-84) "biointact" parathyroid hormone (PTH), bone-specific alkaline phosphatase (BsAP), intact procollagen type I N-terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b). OUTCOME: Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC), sensitivity, specificity, and negative and positive predictive values. Optimal diagnostic cutoffs were determined in an exploration cohort (n = 100) and validated in a separate cohort (n = 99). RESULTS: All biomarkers differed across categories of low 33 (17%), normal 109 (55%), and high 57 (29%) bone turnover. AUC values were in the range of 0.75-0.85. High negative predictive values (≥90%) were found for both high and low bone turnover, indicating the ability to rule out both conditions using the suggested biomarker cutoffs. The highest diagnostic performances were seen with combinations of biomarkers, with overall diagnostic accuracies of 90% for high turnover, and 78% for low turnover. Results were comparable for kidney transplant candidates and recipients in a sensitivity analysis. LIMITATIONS: The single-center approach and heterogeneity of the study cohort are main limitations of this study. CONCLUSIONS: We conclude that the diagnostic performance of biochemical markers of bone turnover is acceptable, with clinical utility in ruling out both high and low turnover bone disease.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Fosfatase Alcalina , Biomarcadores , Remodelação Óssea , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Estudos Transversais , Feminino , Humanos , Masculino , Hormônio Paratireóideo , Diálise Renal , Estudos Retrospectivos
20.
J Cell Physiol ; 237(1): 1070-1086, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658034

RESUMO

Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.


Assuntos
Acetilcisteína , Sulfeto de Hidrogênio , Acetilcisteína/farmacologia , Artérias/metabolismo , Glutationa/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Osteoblastos/metabolismo , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...